Human Reidentification with Transferred Metric Learning
نویسندگان
چکیده
Human reidentification is to match persons observed in nonoverlapping camera views with visual features for inter-camera tracking. The ambiguity increases with the number of candidates to be distinguished. Simple temporal reasoning can simplify the problem by pruning the candidate set to be matched. Existing approaches adopt a fixed metric for matching all the subjects. Our approach is motivated by the insight that different visual metrics should be optimally learned for different candidate sets. We tackle this problem under a transfer learning framework. Given a large training set, the training samples are selected and reweighted according to their visual similarities with the query sample and its candidate set. A weighted maximum margin metric is online learned and transferred from a generic metric to a candidate-set-specific metric. The whole online reweighting and learning process takes less than two seconds per candidate set. Experiments on the VIPeR dataset and our dataset show that the proposed transferred metric learning significantly outperforms directly matching visual features or using a single generic metric learned from the whole training set.
منابع مشابه
Learning Affine Hull Representations for Multi-Shot Person Re-Identification
We consider the person re-identification problem, assuming the availability of a sequence of images for each person, commonly referred to as video-based or multi-shot reidentification. We approach this problem from the perspective of learning discriminative distance metric functions. While existing distance metric learning methods typically employ the average feature vector as the data exemplar...
متن کاملPerson Re-identification: System Design and Evaluation Overview
Person re-identification has important applications in video surveillance. It is particularly challenging because observed pedestrians undergo significant variations across camera views, and there are a large number of pedestrians to be distinguished given small pedestrian images from surveillance videos. This chapter discusses different approaches of improving the key components of a person re...
متن کاملMultiple-Shot People Re-Identification by Patch-Wise Learning
In this paper, we propose a patch-wise learning based approach to deal with the multiple-shot people re-identification task. In the proposed approach, re-identification is formulated as a patch-wise set-toset matching problem, with each patch set being matched using a specifically learned Mahalanobis distance metric. The proposed approach has two advantages: (1) a patch-wise representation that...
متن کاملIn Defense of the Triplet Loss for Person Re-Identification
In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person reidentification subfield is no exception to this, thanks to the notable publication of the Market-1501 and MARS datasets and several strong deep learning approaches. Unfortunate...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کامل